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The theoretical treatment of polymers with attractive interactions is iritroduced. It is suggested that
this unsolved problem is treated by new collective coordinates, such as pair fields, which are sensitive to
pairs of different components of the system. Such pair fields are known from the BCS theory of super-
conductivity. Their correlation functions and integral equations show instabilities which correspond to
the formation of complexes and/or aggregations. Physical examples for such considerations are semidi-
lute polyelectrolyte solutions containing oppositely charged polyions.

PACS number(s): 05.70.—a, 61.25.Hq, 36.20.—r
I. INTRODUCTION AND MOTIVATION

To treat the effect of attractive interactions in physics
is a hard problem. A system of attractive particles will
immediately collapse to a dense ball of a given size ac-
cording to its density. In more dilute systems clusters
will be formed and these clusters will be eventually aggre-
gated as time passes. If the particles have internal struc-
ture, as in the case of polymers, the situation becomes
more complicated, because the polymers will form an as-
sembly of complicated complexes. The structure of such
complexes will be difficult to describe formally but the
essential physics can be described as will be shown below.
A physical example for such a polymer problem is given
in the case of oppositely charged polyelectrolyte mole-
cules immersed in a “complex” solvent which contains
solvent molecules and counterions of carrying charges of
opposite sign to maintain overall electroneutrality [1]. A
dilute system of, say, two oppositely charged polyelectro-
lytes dissolved in such a charged fluid is very difficult to
describe physically, since, first, the complete renormaliza-
tion group physics for dilute polymer systems has to be
applied [2] and second, due to the presence of long-range
electrostatic forces, additional problems come into play
which dispute the subject still [3]. Moreover, only little is
known for partially attractive chains and one of the most
reliable theoretical methods to treat such problems has
been introduced by Lifshitz, Gredeskut, and Pastur for
the electron localization problem [4]. Lifshitz, Grosberg,
and Khoklov [5] demonstrated the applicability of this
method to the problem of the polymer collapse, i.e., a po-
lymer chain immersed in a poor solvent where the
effective monomer-monomer interaction becomes attrac-
tive.

The problem which will be studied in this paper avoids
J
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such difficulties by introducing a large number of
polyelectrolyte chains into the solvent. It is crucial for
what will be presented below that the chains form a
“strong solution” (in the terminology introduced by Doi
and Edwards [6]), i.e., the overall concentration satisfies
¢ >c*, where ¢* is the overlap concentration of the cor-
responding neutral polymer solution. In most such cases
mean field methods can be applied and the random phase
approximation (RPA) has been proven to be a very
powerful basis for further extensions [2,7]. Nevertheless,
the problem is far from being trivial because the formula-
tion of the RPA on the classical level is not sensitive to
the presence of attractive interactions. This can be seen
from the following example.

The dimensionless Edwards-Wiener Hamiltonian for
an interacting polymer system can be generally written as

2 n
H=L1% ¥ desrf”
p=1i=1"0
2
+1 3 em7? [ dkp KV, (k)p(—Kk),
m,v=1

(1.1)

where the first term is the usual Wiener measure for all
the chains involved in the system. The second term
denotes the interaction for a two-component interacting
polymer system. r,,(s) is the chain variable of the ith
chain of component u and p,(k) is the collective density
field component. V,, denotes the interaction matrix be-
tween all monomers.

It is now assumed that both monomer types v and u
have repulsive interactions, whereas when ¥V, is attrac-
tive a fundamental problem becomes obvious. The
effective Hamiltonian for component 1 can be obtained
by integrating out component 2. This yields the Hamil-
tonian in a standard way [7],

(1.2)
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where V g(k) is the effective interaction given by

V3, (k)
1/5,(k)+V,,(k)

Ve(k)= 1V, (k)— (1.3)

and S,(k) denotes the bare densities correlation function
for component 2. Obviously the effective interaction does
not depend on the sign of V;,. It does not matter if V,, is
attractive or repulsive; the standard RPA yields identical
results. This is unphysical, and a new formulation of the
RPA has to be established since complex formation can-
not be described by Eq. (1.2).

It will be shown later in the paper that for such attrac-
tive pair interactions a pair field A(r,,r,) has to be intro-
duced, instead of a single component density field p,(r).
In contrast to the single component field p,(r), the pair
field is sensitive to both types of chains. Their correla-
tion function {A(r,,r,)A(r;,r,)) determines instabilities
which correspond to the onset of complex formation.
The situation is very similar to the phenomenon of super-
conductivity where the pair field is equivalent to the gap
parameter which describes the Cooper pair formation [8].

The paper is organized as follows. In Sec. II we recall
the physical quantities of interest in the framework of the
continuous model proposed by Edwards. In Sec. III the
pair-field Hamiltonian is introduced. In Sec. IV, the
correlation function of two oppositely charged polyions is
calculated and its connection to complex formation is de-
rived. The last section is devoted to the discussion.

II. BASIC EQUATIONS
AND FORMULATION OF THE PROBLEM

We consider for simplicity a fully symmetric polyelec-
trolyte system consisting of n polyanions and n poly-
cations both with N monomers in each macromolecule.
Assuming that the Debye screening length is much small-
er than the radius of gyration the Edwards model [6] may
be used, whereby the charges are uniformly smeared
along the chains. The dimensionless Hamiltonian for this
system is given by

2 n
N, .
f dsrf“.
—1i=10

2
2 n
+1 3 3 [Vas [NasVlnue-n,60],

p=1i
w,v=114j=1

H=

N

(2.1

where we have absorbed the factor of (kz7)~! into H.
Furthermore, units are used in Eq. (2.1) such that
r=V"3x/I, where [ is the Kuhn length and x denotes the
spatial position of a polymer segment. The potential V,,
is a superposition of excluded-volume effect and screened
Coulomb interaction. We have

exp[ —Ir|/Ap]

Vo D) =ud(r)+(—1#+"Agf? i , (22
where A is the Bjerrum length
e?/kpT /3
SR 2.3)

B 4meeD 1

Ap denotes the Debye screening length

s I?
Ap =}"Bci? )
¢; is the concentration of the counterions and the added
low molecular salt, e, is the unit electrical charge, g, is
the permittivity of vacuum, D is the dielectrical constant
of the solvent, and f denotes the fraction of charged
monomers in a polyion. The partition function can be
written in terms of a path integral [9] as

(2.4)

Z= f Il Dry;Dryexp[—H], 2.5)

i=1

where f Dr represents the summation over all possible
configurations of the chains.

Our aim is to find an effective partition function Z,
for two oppositely charged polyions. We have therefore
to integrate out all chains except two. Due to the cou-
pling of polymers this calculation would be very compli-
cated. For this reason we use the well-known RPA
decoupling scheme [7] to get

Zl2=f DrDrjexp(—Hy[ry,15]) . (2.6)

The Hamiltonian H, for this effective two-polymer sys-
tem reads

2 N
H,=1% fo ds i?

i=1

2 N N
+1 .21 fo ds fo ds'w;;[r;(s)—1;(s")] . 2.7)
L,]=
After introducing the Fourier transform of the w;;’s one
obtains after standard manipulations

u —v(k)

- , 2.8
) = o 0S0][1 + 2puS (0] @8
where v(k) is the Debye potential given by
exp[ —|r| /A
v(k)=fd3rexp[—ikr]}»3f2—p[—‘—r!———p—]
4mhrpf?
:_li , (2.9)
K2+Ap2

p is the concentration of all polymers, and S is the unper-
turbed scattering function defined by [6]

2
2 2
S(k)=N2{—=—— = | [1—exp(—k*N/2)] } .
lkzN ey | e ]
(2.10)
The intramolecular potential w;; becomes
2v(k)
(k)= _ 2.11)
w;(k)=w,(k)+ 15 2pW(K)S(K) (
The probability distribution function

G,(ry,13, 15,13, N, N,) is obtained from averaging over
all possible chain conformations with fixed end-point vec-
tors ry,r] and r,,15. This average can be written in terms
of a path integral as
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Glz(rl,r'l,rz,rlz;Nl,Nz )= fDRlDRzexp( _H12[R1,R2])8(R1(0)_r1)

There is another approach for calculating statistical
properties of polymer chains which makes use of the
polymer-magnet analogy introduced by de Gennes [2].
The correlation function is after the Laplace transform

G,(E,,E,)= fo“’ dN, fo“’szexP[ —E,N,—E,N,]

XG,(N,N,) (2.13)

that of an O(n) field theory in the limit # —0. The start-
ing point is the Hamiltonian

2
Lypldnd)=1 3 [ drd’r'e,(0G, (5,1, E )¢, (r)

i=1
2
+1 3 [ drd’reHnw,(r—r)¢ir)
ij=1
(2.14)
where
G, !(r,1';E;))=8(r—1' )N E;—1V?) 2.15)

is the inversion of the bare propagator. The correlation
function G, can be calculated using a generating func-
tional defined by

Y[hy,hy)= [ DéDoexp | —L,[41,4,]

2
-3 fd3rh,~(r)¢,-(r)l )

i=1
(2.16)
Then we get

exp —%fd3rd3r'¢%(r)w,~,-(r~r’)¢,2(r')]
=const><fdy,- exp [ —+

and

exp —fd3rd3r¢%(r)w12(r—r’)¢§(r’)]

[d’rd’ry(ow; =)y, (e)—i [ dry,(1)gir)

(2.12)

|
G (1,1, 15,1 E L E,)
_ 84Y[h1,h2]
8h (r,)6h (r])8h,(ry)8h, (1)) |k ,hy—0

, (217

where the symbol 6 denotes the functional derivative
with respect to vanishing external fields 4, and 4,.

The sign of the potential w;, is crucial. This cir-
cumstance can be proved within the framework of the re-
normalization group (RG) technique. From RG it is
known that the Hamiltonian (2.14) corresponds formally
to a system with cubic anisotropy [10]. Provided that the
w;’s are positive and short ranged a second-order transi-
tion and a fixed-point behavior of all coupling parameters
are found when w,, is positive and short ranged too. In
contrast to that no fixed-point behavior is obtained for
w;, <0. In the latter case the macroscopic properties of
the system depend sensitively on the interaction. This re-
quires a theoretical approach different from that of RG
which will be given in the next section.

ITII. EFFECTIVE HAMILTONIAN
FOR THE PAIR FIELD.
RPA FOR ATTRACTIVE SPECIES

A characteristic feature of the system under considera-
tion is the pairing between oppositely charged polyions.
If pair effects are dominant a conventional perturbation
expansion is unable to predict this kind of phenomenon.
To overcome this difficulty we shall introduce a pair field
which has the advantage of taking into account pairing
explicitly [8]. After rewriting the generating functional
(2.16) in terms of the pair field a suitable starting point
for a perturbation expansion is obtained.

In order to remove all quartic interaction terms in Eq.
(2.14) we introduce further auxiliary fields y,;(r). Starting
from the identities (see Appendixes A and B)

(3.1)

[A (r,r)]? [A,(r,r)]?
= t D 3 3. 3 3. a
cons f A;DA_ exp fd rd’r w1 +fd rd’r W (1)
Lo ee) [0 A, $i(e) "
+fd rd r ¢2(r) As_Aa 0 (l‘,r) ¢2(rr) > (3.2)

one gets after inserting these into Eq. (2.16)
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2 [Ay(r,1")]? [A(r,r)]?
Y[h,h,]= D¢, Dy;DA,DA d’rh;( + d3d3’——— d’rd’r——"———
[h1,ha1= [ TI D4.DY.DADAexp Elf thy(0g,(0)+ [ o= T P
2
-3 fd3rd3r’y,-(r)w,, Nr—r1")y,(r')
i=1
3 $y(1) K7l —2A,—2A, é(r') | "
— 1 ’ ’
tfddr |y o aa+2a, kiU |®) g | |0 G
where
K Nr,0;E)=G; \(r,r';E;)+i2y,(r)8(r—r1') . (3.4)

A, denotes the symmetric part of the pair field and A, is the corresponding antisymmetric one. Note that 1/w,, has to

be understood as numeric division in contrast to the inversion of w;; !

. Furthermore we have omitted the irrelevant pre-

factor for convenience. The integration over the ¢’s is Gaussian, yielding

2 2 S(r,r') 2
Y(hy,hy)= [ I Dv:DADAexp |1 S [ d’rd’r'y (0w (e—1)y )+ [ d’rd’r [w(—rr]—)
i=1 i=1 [PAL SN
—1
[A,(r,r)]? K, —2A,—24,
+ 3 3 a —1
fd rd°r w1 > Trin —2A,+24, Ky
. hy(r) K ! —2A,—2A,
1 ’
+4 [drd’r hy(r) | | =24, +24, K;!
h(e) "
X(r,r’) hy(r') , (3.5)

where the trace Tr stands for

2
TrB=73 [ d’rB,(r,r).

i=1

(3.6)

The logarithm InB may be expanded in the standard
fashion as

o

)

v=1

1

InB=— [—(B—D]" (3.7)

The generating functional (3.5) establishes a Hamiltoni-
an which depends only on the auxiliary fields ¥; and the
pair field A. The matrix

Ki!
—2A,+2A,

—2A,—24,

s (3.8)

shows a structural equality with the Gorkov equation in
the theory of type II superconductors [8]. In some
respects the pair field corresponds therefore to the gap
parameter. To see that A describes pairing explicitly let

[

us examine its meaning at the classical level. The appli-
cation of the Euler-Lagrange equation to the exponent of
Eq. (3.3) produces in the limit #; —0

A, )=w(r—r1")[d(r)dy(r' )+ (1" )dy(1) ] (3.9)
and
A (r,r)=w ), (r—1' )1 [d(r)P,y(r") — (1" )hy(r)] . (3.10)

From Egs. (3.9) and (3.10) it follows that A is connected
with the product ¢,¢, which corresponds to the correla-
tion of monomers with different sign.

To construct a Hamiltonian from the generating func-
tional (3.5) in terms of the order parameter A we have to
perform the trace. This yields a Hamiltonian with an
infinite number of terms. Therefore we make use of the
fact that the path integral is dominated by the minimum
of A when w;,— —0. Then the saddle point expansion
implies that the Gaussian approximation is sufficient to
calculate the path integral [11]. We shall see that the
quadratic term of A, does not contribute to the correla-
tion function G, when the system is highly symmetric.

The generating functional (3.5) is evaluated up to
second order of A; and A, as
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2 2
Y(hy,hy)= [ TI Dy:DADAexp |—1 S [ d’rd’r'y,(thw; (r—r)y,(r)+2tr(K A K,A,) —2tr(K A, KA,
i=1

i=1

2
+1 3 [ d’rd’rh (0K (0B hy(x)

i=1

+ [ dtd’rho[K0A0K,+Ky0A0K Johy

) (A (r,r)]?
+fd3rd3rhlo[KloAaoKz—KzoAaoKl]oh2+fd%d"'r-;;i-m
-1
[A,(r,r')]? Ky 0
3 3. _l
+ [ d’rd’n ooy I o ko] (3.11)

where tr in contrast to Tr means
trB= f d3rB(r,r),

and the symbol o stands for the convolution
BoC= [ d’RB(r—R)C(R—1') .

(3.12)

(3.13)

Note that the inversion of matrix (3.8) is calculated to first order of A; and A, because the second-order term produces
corrections to Y which are irrelevant for calculating G,, due to Eq. (2.17). For highly symmetric systems the expres-

sion

f d3rd3l"h1°[KIOAaOKZ—KZOAaoKl]0h2

(3.14)

can be neglected. Integrating out the A, field an irrelevant prefactor is obtained. After tedious but straightforward
algebra one verifies that the integration over the A, field yields

Y[hy,hy)= [ Dy Dy,exp

K7t oo

-1
5Irin 0 K;!

where (), is the abbreviation of
Qp(ry, 1,15, 1) = [ d°RA’R'K (1, R)K,(rp,R)
Xw,(R—R)T o(R,r},R',15) ,
(3.16)
and I', is the solution of the linear integral equation
T y(r, 1,15, 15) =K (1,,1))K,(1,,15)
—2 [ d’Rd’R'K,(1;,R)K,(r),R")
Xw,(R—R')I,(R, 1}, R, 1) .
(3.17)

In order to integrate out the y; fields let us decompose
them into two parts,

3
0 — fd ryi(r)

e e e (3.18)
4 fd3r

and

2 2
iy fd3rd3r’h,-(r)K,-(r,r’;E,- i (r')—1 3 fd3rd3r’y,~(r)w,~,~_l(r—r')}’,-(r’)
i=1

i=1

— [[d’rid’nid’r,d nyh (1)h (£)Q (1, 1,1, 1R, (0)ho (1)) |

(3.15)

,yi_l)(r)z.yi(r)_yf,()) . (3.19)

Note that !’ does not depend on r. From Egs. (3.18)
and (3.19) one gets

[ a*ryin=o0. (3.20)
Furthermore both fields are independent from each other,
i.e.,

[y @+yPop

=y [ d’r+ [ dyP(0P . 321
If we restrict ourselves to O(y?) then the integration in
Eq. (3.15) with respect to y; can be performed exactly.
Using Eqgs. (3.18)—(3.21) it can be easily verified that the
linear contribution of the trace comes only from y?.
The quadratic term of y{!(r) is irrelevant for calculating
the correlation function G,,. Hence the only effect of the
v, integrations in Gaussian approximation is the replace-
ment

E,—~E;+i2y\® . (3.22)
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It is shown in Ref. [12] that the usage of E; or of Eq.
(3.22) does not play an important role as soon as mean
values such as end-to-end distances are calculated.
Therefore we shall replace K; by G, in the following.
Ignoring a prefactor the generating functional becomes

2
13 [dd’ch(r)G,(x,t';Ehy(x')

i=1

Y[hy,hy]=exp

— [d’rid’rid’n,d’ ok, (r)h (1))

’ ’
X y(r),1,15,13)

(3.23)

X hy(1,)h, (1))

After applying relationship (2.17) to Eq. (3.23) the corre-
lation function reads

G (11,1, 1) =T (1,1}, 1513)
—2 [ d’Rd’R'G,(r;,R)G,(r,,R)
Xw,(R—R')T,(R,r},R',15) .
(3.24)

The expression obtained for the correlation function is
connected with an integral equation which is clearly
beyond a simple perturbation expansion. The evaluation
of Eq. (3.24) is the topic of the next section.

Iy,(r,+r1,15,1,0)=G (1, +1,1],)G,(1,0)

IV. THE CORRELATION FUNCTIONS.
COMPLEX FORMATION

To calculate the mean distance between the ends of
two oppositely charged polyions a new set of coordinates
is needed. We remark that due to translational invari-
ance, i.e.,

G;(r,r')=G;(r+R,r'+R) , (4.1)

the auxiliary function I'}, as well as the correlation func-
tion G, also obey translational invariance, i.e.,

[, ry,0,05)=T(r; +R,r;+R,r,+R,r;+R)  (4.2)
and
G(r,1,1, 15)=G,(r; +R, i +R,r,+R,r;+R) .
(4.3)

Without loss of generality we may identify r; with the
origin. Then I'}, and G, depend only on three vectors.
The new set of coordinates is defined as

r=r,, (4.4a)

r,=rj, (4.4b)
and

[,=1,—1,, (4.4¢)

whereby the Jacobian is unchanged. Then the integral
equation (3.17) takes the form

-2 fd3R12d3R G,(r;+1,R,+R)G,(r,R)w,(R;,)T (R, +R,17,,R,0) . 4.5)

The integration with respect to r defines a new auxiliary
function. We have

[ y(rp,11)= [ d*r D yy(r,+1,10,,1,0) (4.6)
and
Flz(rlz,r]2)=fd3rG1(r12+r,r'12)G2(r,0)
—2 [d°R,d% G, (r,+1,R )G, (1,0)
Xwip(Rp)IT Ry, 1) - (4.7)
Using
Gyy(ryp )= [ d’1 G (1, +1,105,1,0) 4.8)
one finds
G1a(rp, 1) =T (1, 145)
—2 [ d°R,d’t G, (1, +1,R3)G,y(1,0)
Xwp(Rp)T (R, 1) 4.9)

Equation (4.9) defines a correlation function which de-
pends only on both distances between the ends of oppo-

f
sitely charged chains. The knowledge of such a function
is sufficient to calculate the mean distance between the
polyions.

Up to now we have confined ourselves to the real-space
representation. It is more convenient for our purpose to
introduce Fourier transformed quantities, which are

F[z(klykz):Gl(k] )Gz(k] )(277')38(k1 +k2)
"2G1(k1 )Gz(kl)(zﬂ')_3

X [ diqwy,(k,—q)Tyy(q.ky) ,  (4.10)
where
f&)= [ d’rexp[ —ik-r]f(r) 4.11)
and
fO=@m) 73 [ d’kexplik-r]f(k) 4.12)

are the standard Fourier transformations. According to
Eq. (4.9) the correlation function G, reads
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G 12(k; ko) =T 15k, ky) =26, ()G, (K, )(2m) ™
X [d3quwy,(k,—q)
XTp(gk,) . (4.13)

After the inverse Laplace transform [13]

G,(ky,ky; Ny, N,)=T,(k},ky; Ny, N,)—2(27) 3

Ny N,
x [ dqf “dr [ Gk N, —1)G kN, —mwip (ki — Q)T 15 ks 7y, 7a) -

f“““dElfd"f"“dEzexp[E,N,+E2N2]G(E1,E2)
—l

-1
471'2 c—iow
=G(N,N,), (4.14)

Eg. (4.13) becomes

(4.15)

The mean-square distance between the ends of different chains can be related to G, in the following way [14]:

82
—g—k—Z_Glz(o’k;Nl,Nz)

G,(0,k;N,,N,) k0

(1’%2)=

and the corresponding integral equation reads

N N
G(0,k;N1, N;)=T (0N, N;) =202m) 7 [ d’quip(@) [ dry [ “drDilakimy,m) .

Using the bare propagator
G UKE)=1k’+E,,
the bilinear expansion of Eq. (4.10) becomes [11]

1

Patkpka B B2 =25 S E E,

where 1, is the eigenfunction of the integral equation

[L(k*)?+ M E,+E,k* ¢, (kE |, E,)+2(2m) 3 fd3qw12(k—q)¢,,(q;E1,E2)=x,,¢,,(k;E1,E2) .

b (K E By )Y, (—kyELEs)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

We are mainly interested in the limit of long chains, i.e., N;— «. The application of the inversion formula (4.14) to

I'5(k,ky; Ny, N, ) yields

_1 ¢
i

—iw

The saddle point approximation states for N, =N, =N

N+=3 Tk, kyE, ,E) b 0

4.22
3E. ‘. 4.22)

Provided that 3, is analytic with respect to E the solu-
tion of Eq. (4.22) is given by that pole of Eq. (4.19) which
corresponds to the lowest eigenvalue of Eq. (4.20). Then
E, is independent of the k’s and reads

E.,=V —. (4.23)
Note that A, itself depends on E, through Eq. (4.20).
From Eq. (4.21) it follows that
yy(ky,ky; N— o, N— o) xexp[2E N JYo(k;E, ,E,)

XY —kyE E,) . (4.24)
It can be seen that in the limit N — oo, '}, is determined
by the lowest (negative) eigenvalue and its corresponding
eigenvalue function. This proves the ground state domi-
nance. From Eq. (4.17) one deduces that

+i°°dE1f:+.iwdEzexp[E,Nl+E2N2+1nl“12(k1,k2;E1,E2)]———I‘lz(kl,kz;Nl,Nz) .
—1lo0

(4.21)

[
G 1,(0,k;N — 00, N — o0 ) < exp[2E, N oo —K;E, ,E, ) .
4.25)

For further considerations it is of interest to get an ex-
act expression of Eq. (4.25). Therefore we shall restrict
ourselves for a moment to a &-like potential, i.e.,
wi,(r)=w,,8(r) before we come back to the more realis-
tic case. Then it follows from Eq. (4.20)

const
L2 +E K —1,

Vo kE,,E,)= (4.26)

where const depends only on w;, and E,. The lowest ei-
genvalue A, is obtained by minimizing Eq. (4.20) with
respect to the eigenfunction (4.26). One gets

K0=——;4— 7E, —Ei 4.27)
The condition (4.23) gives
2
Wi
E,=——, (4.28)
o2t
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so that the (un-normalized) eigenfunction reads

2 2
wi Wi,
¢0 k;Et_ E*=21T2

- 272’

1
- . (429
L2 +(w?, 202k +wh, /4t )

According to Eqgs. (4.16) and (4.25) the mean-square dis-
tance between chain ends becomes
4 2
<1'%2 = 7;
Wiy

(4.30)

Equation (4.30) tells us that {r3,) is fully determined by
the interaction strength w,,. Dissolution occurs when
w,, or the eigenvalue A vanishes.

Let us come back to the more realistic potential (2.8).
To enable further calculation we use a Padé fit for the
scattering function (2.10) given by

N2
C2+KN/2
By assuming that the Debye screening length (2.4) is

much smaller than the radius of gyration, i.e., RZ=N /2,
the approximation

S(k) (4.31)

dmApf?
u—
K2+’

(k?)?
(K2+EL KA +EC?)

w, (k)= (4.32)

holds, where & is the Edwards screening length defined
as

Ex*=4pNu , 4.33)

and £ is an effective Edwards screening length corre-
sponding to an excluded-volume effect which is induced
by the screened Coulombic interaction. Therefore

Ecr=8mpNAgfoA} . (4.34)

Unfortunately the eigenvalue problem (4.20) with
respect to Eq. (4.32) is not solvable exactly. If &5 and &
are much larger than A, the potential (4.32) may be con-
sidered approximately as 8-like. Then Eq. (4.26) may be
used as a trial function. For computational reasons this
would not be a good choice. Therefore we use the ls
wave function of a hydrogen atom,

172
a

(k)=8 —_
v i (a?+Kk?)?

2 , (4.35)
m

where a is the variational parameter. Note that Eq.
(4.35) produces the results of Egs. (4.28) and (4.30) with a
failure smaller than 1%.

The solution of Eq. (4.23) requires self-consistency
which is, even in the case of the approximations used,
(4.32) and (4.35), very difficult to obtain. We shall there-
fore restrict ourselves to the condition for which the
lowest eigenvalue vanishes. After minimizing Eq. (4.20)
for vanishing E, one obtains, neglecting terms of
O((Ez'+Ec1)?A%), the following result:

u—dmhg S0+ (€5 +60") | 3T +dmhp S}

(4.36)

Equation (4.36) yields a critical polymer concentration p,
above which complex formation is no longer possible.
The functional dependence of p, on temperature, solvent
quality (dielectric constant), and polymer properties such
as Kuhn length /, excluded volume u, or charge fraction
f, and low molecular salt concentration is very compli-
cated and a quantitative discussion seems to be difficult.
Moreover, the Hamiltonian (2.1) together with the in-
teraction (2.2) are, however, a phenomenological model
which does not allow a quantitative comparison to a real
experimental situation. Nevertheless, the effective poten-
tial shows a change of sign at kK =k, and its physical
consequences will be discussed below.

V. DISCUSSION

The condition for the lowest eigenvalue to be zero im-
mediately yields a nontrivial zero for the effective poten-
tial w,(k) calculated in Eq. (4.32). The potential w,(k)
vanishes for the wave vector

ki= )‘52 —
1= (g HECD(Ap+5/128A5 F203)

Apl. (5.

It is interesting to note that w;, (k >k,) is repulsive,
whereas for 0 < k < k. the potential becomes attractive:

>0, k. <k<oo

<0, O<k<k, . (5.2)

w,(k)

This observation tempts one to postulate a “blob mod-
el” where the size of the blobs £, is roughly given by
&, <k . At large distances the tagged chain embedded
in the medium experiences an attraction whereas at small
distances the chain is still self-avoiding. This conclusion
needs, however, a more detailed consideration.

First, it is important to notice that the existence of a
finite k, is the direct result of the Edwards screening of
the excluded-volume potential, i.e., for

£510 (5.32)

or

(5.3b)

c—0

(c being the monomer concentration) a dissolution of the
complex can take place when low molecular salt is added.
Equation (4.36) predicts then a compensation of excluded
volume and the Debye potential. If this happens the
effective interaction w,,(k) vanishes at zero wave vector.
For finite monomer concentration ¢ =c, no such com-
pensation at zero wave vector takes place, but at finite
wave vector k =k,. This is a direct consequence of the
Edwards screening. Therefore the chains are partially at-
tractive. A physical picture is given in Fig. 1.

This picture, however, is not as strong as the de
Gennes blob picture for neutral solutions [2]. To see this



50 POLYMER SYSTEMS WITH ATTRACTIVE INTERACTIONS: ... 333

Ep o 1k

FIG. 1. The physical picture of the complex formation. The
potential w,(k) [Eq. (4.32)] changes sign at a certain wave vec-
tor k. [Eq. (5.1)]. This suggests that on scales larger than
&, < 1/k. the chains attract each other, whereas at smaller
scales the chains are repulsive. The two differently charged
chains are drawn black and gray.

consider the conformational free energy

exp[—F1= [ d’r, d*r,Gpy(riptiiN1,N,) - (5.4)

for the symmetric case N=N;=N,. For N— o the
ground state dominance is satisfied [see Eq. (4.25)] and we
find

F(wlz;(:o)_F(w12=0
2N

Therefore for w,,70 and E, =0 the free energy is identi-
cal with that of the case w;; =0. This yields the con-
clusion that a small attractive part of w,, does not au-
tomatically yield a bound state, i.e., a complex.

Finally we would like to add a few remarks for the
outlook of this approach. In this paper the calculation
J

) R
=—v —A=—E,. (55

has been illustrated for the case of complex formation in
oppositely charged polyelectrolytes. There are many im-
portant physical problems that can also be solved with
this approach. One possible extension of this work is to
study dense systems (close ¢, ) and work out the stability
condition. In this case we expect a microphase separa-
tion transition at a wave vector k, which is very much
related to the critical wave vector k. given in this paper.
This leads to compatibility enhancement of the species
similarly to the case treated previously the first time [15].

Other interesting systems are ionomers, polyampho-
lytes, etc. In such systems the strongly attractive and
repulsive units are replaced along the chains (see also [15]
and references therein). The application of the pair-field
formalism introduced here has been successfully treated
in [16].

It is also of interest to study single polymer chains in
critical fluids such as mixed solvents near their consolute
point [17,18]. In these systems effective attractive in-
teractions for the chain itself are induced by the critical
fluctuations of the fluid and the chain eventually col-
lapses. The path-integral treatment has been given re-
cently [19] and the wave vector dependent (negative)
second virial coefficient was calculated. The combination
of these problems is certainly interesting, i.e., the effect of
underlying criticality on the pair-field correlation func-
tion.

APPENDIX A

In this appendix we derive identity (3.1). Introducing
an auxiliary field A; according to

— A (DA =—y,.(r)yi(r')—iy,.(r)fd3Rw,.,.(r'—R)¢,?(R)—iy,-(r')f d*Rw;(r—R)$XR)

+ [d’Rd*R'w; (r—R)w,(r' —R")$AR)$AR’)

Eq. (3.1) follows when using Eq. (A2), where const denotes

1/const= f DA;exp

—1 fd3rd3r’,ki(r)w,-,-_1(r—r’)k,-(r')] .

}»,-(r)=y,-(r)+if d*Rw;(r—R)$*R) (AD)
then the differential D is unchanged, i.e.,
DA, =Dy, . (A2)
After applying the relationship
f d*Rw; (r—R)w;(R—r')=8(r—r') (A3)
to the product
(A4)
(A5)

APPENDIX B

Here we derive identity (3.2). Because A(r,r’) is a function of two parameters it is necessary to divide it into sym-

metric and antisymmetric parts. Starting from

o (1,0 )=A(1,1')—w (r—r' ) L[ (D)dy(r' )+ ¢ (1 )d,(r)]

and

(B1)

0 (L) =A,(0,1) —w (1 =) [$y(r)dy(r') — ¢y (r')y(r)] , (B2)
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then the identities

Dw,=DA, (B3)
and
Dw,=DA, (B4)
hold. It follows immediately from Egs. (B1) and (B2) that
s(l',l") 2 (T, 7312
[areare 2Bl L sy gap 120080
w(r—r') w(r—r')
[A(r,1')]? [A,(r,r)]?
— 3. g3 S 3. 43 a 3. 73,042 VA2’
f d’rd°’r P P— +f d’rd’r S r— +fd rd°r'¢i(r)w,(r—r')g5(r’)
—fd3rd3r’[As(r,r’)—Aa(r,r’)]¢1(r)¢2(r')—f d’rd’r'[A(r,r')+ A, (1,1')]d,(r')d,(r) . (BS)

Equation (BS5) plays the role of the exponent in Eq. (3.2) which may be obtained using Egs. (B3) and (B4). Note that

const means
o (r,r")]?
1/const=chosDa)aexp fd3rd3rw:2(r—_r,

[o,(r,r')]?

-+ [ d*d’r —— (B6)

wlz(r—r') ’
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